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We study a lattice model of a multispecies prey-predator system. Numerical results show that for a small
mutation rate the model develops irregular long-period oscillatory behavior with sizeable changes in a number
of species. The periodicity of extinctions on Earth was suggested by Raup and SepkoskifProc. Natl. Acad. Sci.
81, 801 s1984dg, but thus far is lacking a satisfactory explanation. Our model indicates that this might be a
natural consequence of the ecosystem dynamics and not the result of any extraterrestrial cause.
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The Earth’s ecosystem is certainly a subject of intensive
multidisciplinary research. Researchers in this field believe
that at least some basic understanding of this immensely
complex system can be obtained using relatively simple
models that, nevertheless, grasp some aspects of its rich be-
haviorf1g. Of particular interest in the physicists’ community
is the dynamics of extinctions of speciesf2g. Palaeontologi-
cal data, which show broad distributions of these events in
the Earth’s history, suggest the existence of strong, perhaps
power-law, correlations between extinctions. Similar correla-
tions appear in the so-called critical systems and such an
analogy resulted in a wealth of interesting models that con-
sider extinctions as a natural consequence of the dynamics of
an ecosystemf3g. However, fossil data are not entirely con-
vincing, and it is not clear to what extent the analogy with
critical systems hold. Futhermore, a number of researchers
prefer an alternative explanation where extinctions appear
because of external stresses imposed on the ecosystem as,
e.g., impacts of comets or meteorites or increased volcanic
activity f2g. The popularity of theories of exogenous origin
of extinctions increased when Raup and Sepkoski concluded
from analyzing fossil date that big extinction events during
the last 250 million years have been occurring with a peri-
odicity of about 26 million yearsf4g. Several theories, mostly
of astronomical origin, have been proposed to explain such a
periodicity, but none of them is confirmed or commonly ac-
cepted f5g. Although the Raup-and-Sepkoski analysis was
put into questionf6g, the more recent analysis confirms a
similar periodicity of extinctionsf7g, keeping this fascinating
hypothesis still open.

Lacking firm evidence of any exogenous cause, one can
ask whether the periodicity of extinctions can be explained
without referring to such a factor, or, in other words, whether
it is possible that the ecosystem dynamics producessby it-
selfd oscillations on such a long time scale. Since the seminal
work of Lotka and Volterra, an oscillatory behavior is al-
ready well known in various prey-predator systemsf1,8g, but
the periodicity of oscillations of densities in such systems,
which is determined by the growth- and death-rate coeffi-
cients of interacting species, is of the order of a few years
rather than millions. Prey-predator systems, where such an
oscillatory behavior was studied, are typically quite simple
and consist of a fixed and rather small number of species.
Certainly a model capable of describing the dynamics of
extinctions should include a large number of species as well

as mutation and competition mechanisms. There is already a
wealth of papers where various models of this kind were
examinedf9g, but none of them reported a long-term period-
icity of extinctions. There is, however, one aspect that these
models are missing and that is perhaps quite important;
namely, they neglect spatial correlations between organisms.
From statistical mechanics we already know that when the
spatial dimension of the embedding space is rather low, such
correlations might play an important role, and hence more
realistic models of the ecosystem should take them into ac-
count.

In the present paper we study a multispecies lattice model,
of an ecosystem. In our model, predator species compete for
food spreyd and spacesto place an offspringd. This competi-
tion combined with a mutation mechanism leads to the peri-
odic behavior, although, in addition, some characteristics of
our modelssuch as, e.g., the number of speciesd show strong
stochastic irregularities. Sometimes our system is populated
by a group of medium-efficiency species. But this coexist-
ence at a certain moment is interrupted by the creation of a
species that is more efficient and able to invade even a sub-
stantial part of the system. However, the reign of such an
apex predator does not last long. It is a fast-consuming spe-
cies and quickly decimates the population of the prey, which,
in turn, leads to its own decline. Such a situation opens up
niches that again become occupied by less-effective species
that survived the invasion or were created by mutation, and
the situation repeats. Simulations show that the smaller the
mutation probability, the larger the periodicity of such a be-
havior. Although it is difficult to assess, we expect that the
mutation rate in real ecosystems, as interpreted in the context
of our model f10g, is very small and the presented model
might at least suggest an explanation of the 26 million years
periodicity of big extinctions as a natural consequence of the
ecosystem dynamics, not as the result of an external pertur-
bation.

Our model is a multispecies extension of an already ex-
amined prey-predator modelf11g. At each sitei of a square
lattice of linear sizeN we have the four-state operatorxi that
corresponds to this site being emptysxi =0d, occupied by the
prey sxi =1d, by a predatorsxi =2d, or by both of themsxi

=3d. Each predator is characterized by a real number param-
etermi s0,mi ,1d, which we will call sizesmi is meaning-
ful only wheni is occupied by a predatord. We also introduce
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the relative update rate of the prey and predatorsr s0, r
,1d and the mutation probabilityp. The dynamics of this
model is specified as follows:sid Choose a site at random
sthe chosen site will be denoted byid. sii d With the probabil-
ity r update the prey at sitei si.e., if x1=1 or xi =3, otherwise
do nothingd. Provided that at least one neighborssay jd of the
chosen site is not occupied by the preysi.e., xj =0 or xj =2d,
the prey at the sitei produces an offspring and places it on an
empty neighboring sitesif there are more empty sites, one of
them is chosen randomlyd. Otherwisesi.e., if there are no
empty sitesd the prey does not breed.siii d Provided thati is
occupied by a predatorsi.e., x1=2 or xi =3d update this site
with the probability s1−rdmi, where mi is the size of the
predator at sitei. If a chosen site is occupied by a predator
only sxi =2d, it dies fi.e., the site becomes emptysxi =0dg. If
there is also prey theresxi =3d, the predator consumes the
preysi.e.,xi is set to 2d and, if possible, places an offspring at
an empty neighboring site. For a predator of sizemi it is
possible to place an offspring at a sitej provided thatj is not
occupied by a predatorsxj =0 or xj =1d or is occupied by a
predatorsxj =2 or xj =3d, but of a smaller size thanmi sin
such a case a smaller-size predator is replaced by an off-
spring of a larger-size predatord. An offspring inherits the
parent’s size with the probability 1−p, and with the probabil-
ity p it gets a new size that is drawn from a uniform distri-
bution.

One can see that the sizemi of a predator determines both
its update rate and its strength when it competes with other
predators for space. Although the increased strength is al-
ways favorable, the larger update rate might be a disadvan-
tage when prey do not reproduce fast enough. As it will be
shown below, the behavior of our model is very much influ-
enced by this property of the dynamics.

The already-studied single-predator versionf11g is ob-
tained when all predators have a unit sizemi =1 and sup-
pressed mutationsp=0. In such a case, forr .0.11 the
model is in an active phase with positive densities of preyr0
swhich is a fraction of all sitesi such thatxi =1 or xi =3d and
predatorsr sfraction of all sitesi such thatxi =2 or xi =3d.
For r ,0.11 the update rate of prey is too small to sustain an
active phase, but it is a population of predators that becomes
extinct and the model enters an absorbing state where all
sites are occupied by prey. In the active phase close to the
transition points0.11d one observes oscillations ofr0 andr,
but the amplitude of these oscillations diminishes in the ther-
modynamic limitN→`. On the other hand, for the model on
the three-dimensional lattice such oscillations most likely
persist in this limitf11g.

To examine the behavior of our model we used simula-
tions and measured its various characteristics, such as densi-
ties of preyr0 and predatorsr, the average size of dominant
predatorf, the average sizem, the number of speciess, and
the lifetime of predator species. To defines we classify
predators into species according to their size. Some of these
quantities are presented in Fig. 1. One can see that forr
. rc,0.27 predators in the system belong essentially to one
dominantsf ,1d species of a large sizesm,1d. Of course,
mutations create, from time to time, some other species but
they occupy a negligible portion of a system—unless a

newly created species will have a larger size than the domi-
nant species and will be able to invade the system. Figure 1
also shows that a much different behavior appears forr , rc.
In this case a dominant species occupies only a small frac-
tion of a systemsthe comparison with the results for system
sizeN=200 shows a strongN dependence and suggests that
for largerN the fractionf will diminish to zerod. Moreover,
the average sizem differs substantially from unity, which
indicates that having a large size is no longer an advanta-
geous feature. Another indication of a more complex behav-
ior, in this case, is a large increase of the number of species.

In our opinion, it is the regime forr , rc whose complex
dynamics might resemble the behavior of realistic ecosys-
tems. To have a better understanding of the behavior of the
model in this regime we present a time dependence of some
of its characteristics. The unit of time is defined as a single,
on average, update of each sitesi.e., it is made ofN2 elemen-
tary single-site updatesd. Although in Fig. 2 densitiesr0, r,
and the average sizem show a relatively regular oscillations,
the number of speciess is much more irregular. During pe-
riods of multispecies coexistence, predators have a rather
small sizesthey eat slowlyd, which enables them to sustain
their relatively large densityr. As a result the density of prey
r0 is rather small. At a certain moment, however, a predator
of a large size is created and starts to invade the system. As
a result the number of speciess rapidly decreases whilem
increases. Moreover, the densityr decreases, and this is re-

FIG. 1. Average sizem, fraction of a dominant predator species
f, and the number of speciess as a function of update rater. Results
of simulations do not depend on an initial configuration, and usually
it was a random distribution of prey and predators.

FIG. 2. Time dependence of the number of speciess sto super-
pose with other data it was divided by 40d, average sizem, density
of prey r0, and density of predatorsr.
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lated to the fact that a predator of a large size consumes prey
too quickly and is simply running out of food. Hence, the
population of this predator in some places disappears, which
creates areas where prey can breed without being consumed
by predators, and that is why the densityr0 after an initial
short decline increases to a relatively large value. However, a
large-size species cannot keep its dominance for a long time
because large empty places occupied mainly by prey consti-
tute ideal niches for other predators as well. As a result, the
model is driven again toward a multispecies coexistence.

An important question is how these oscillations behave
for an increasing system sizeN. Comparingsnot presentedd
results for different values ofN, we expect that the amplitude
of these oscillations will diminish to zerosperiod of oscilla-
tions does not seem to depend onNd. This is because for a
sufficiently largeN the system is essentially decomposed
into several independent domains where multispecies and
fewer-species periods are uncorrelated and fluctuations can-
cel out. However, there is an additional factor that is respon-
sible for the size of these independent domains and thus the
amplitude of oscillations, namely, the mutation probabilityp.
Indeed, the end of the multispecies period in a certain do-
main is induced by the creation of a large-size predator. For
the decreasing mutation probabilityp such events will be
less and less frequent and multispecies domains will have
more time to grow. We thus expect that for decreasingp the
size of such domains should increase and, as a result, for
finite N the amplitude of oscillations should also increase.
Moreover, the period of these oscillations, which is deter-
mined by the time needed for such domains to grow, should
also increase. Simulations, as shown in Fig. 3, confirm such
a behavior. Let us note large fluctuations forp=0.00001,
where the number of species after an invasion drops roughly
by a factor of two. To examine thep dependence of the

period of oscillationst more quantitatively, we calculated the
Fourier transform of the time-dependent number of speciess
sother characteristics likem, r0, or r give basically the same
resultd. The period of oscillationst as extracted from the
maximum of this transform is shown on the logarithmic scale
in the inset of Fig. 3. Straight-line fit corresponds to the
dependencet,p−0.31, but calculations for larger system size
N or smallerp might modify this estimation.

As we already mentioned, the amplitude of oscillations in
our model is determined by the combination of two factors:
system sizeN and mutation probabilityp. That t increases
for decreasingp is an important result. It shows that, for a
small mutation probabilityp and finite but large system size
N si.e., specifications of the real ecosystemd, the model de-
velops long-period oscillatory behavior with sizeable
changes of, e.g., the number of speciess. It might be inter-
esting to note that for the single-predator versionf11g, with
mi =1 and p=0, the period of oscillations in the two-
dimensional case forr =0.2 is ,30. For the present model
and for p=0.00001 the period of oscillations is larger by
almost three orders of magnitudessee the inset in Fig. 3d. It
shows that the periodic behavior in our model has a much
different mechanism than the Lotka-Volterra oscillations in
simple prey-predator systems.

One of the properties often analyzed in models of ecosys-
tems is the lifetime distribution of species. Palaeontological
data suggest some broad distributions, but they are, again,
not very conclusive and both exponential and power-law fits
can be madef2g. The lifetime distribution for our model is
shown in Fig. 4. Although forp=0.01 the numerical results
suggest an exponential distribution, for smallerp the situa-
tion is less clear. Especially, forp=0.00001 it seems that a
broader, perhaps a power-law, distribution might better de-
scribe the lifetime of our species.

It would be interesting to further analyze our model. For
example, one can implement a less abrupt mutation mecha-
nism, where a new species will be only a small mutation of a
parental species. Such a modification probably results in a
longer period of oscillation and might be more suitable for
comparison to the real ecosystem. Another possibility might

FIG. 3. Time dependence of the number of species forsfrom
topd p=0.00001, 0.0001, 0.001, and 0.01. To superpose the data on
a graph the actual values ofs were divided by some factors. Such an
operation does not change a characteristic period of fluctuations and
their relative amplitude. Inset shows the period of oscillationt as a
function of mutation probabilityp obtained from the maximum of
the Fourier transform of the time dependence of the number of
speciessN=1000d.

FIG. 4. Logarithmic plot of the probability distribution of life-
times of predator species.
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be to examine the differences in, e.g., lifetime distribution of
species before and after an extinction. That such differences
exist is suggested by the asymmetry of our data in Fig. 2,
where the changes in a preextinction period seem to be dif-
ferent than in the postextinction period. Palaeontological
data also show certain differences in longevity of species

during such periodsf12g, and a comparison to the predictions
of our model, if feasible, would be very desirable.
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